Marking to Market Corporate Debt Lorenzo Bretscher, Peter Feldhutter, Andrew Kane, and Lukas Schmid

discussion by Toni Whited

2020 CAFFE Seminar

Discussion Marking to Market Corporate Debt

Outline

Summary

2 Real Options

3 Better Framework

4 Three Results

5 Conclusion

This is a paper about measurement

It offers a marvelous job of measuring the market value of debt.

Great data!

- The measure tracks the book value of debt
 - more closely for firms outside of financial distress.
 - less closely for firms inside financial distress.

The paper contains three main results

- Make a better measure of Tobin's q and find little evidence of investment–cash flow sensitivity.
- Their measure improves the prediction of default.
- They find a leverage premium but no value premium after they control for market leverage.

The organization of the paper is fractured

- > They start with a simple real-options model with defaultable debt.
- > There is a careful explanation of the data and the measurement.
- > The investment–cash flow results with no reference to the model.
- ► The default results with reference to the model.
- The asset pricing results without reference to the model.

Summary Real Options Better Framework Three Results Conclusion

There is a lot of good stuff in this paper

I want to make some suggestions for reorganizing it in a single unifying framework.

Explain why the current model is too stylized

Outline a model that might be able to nest all of the interesting facts.

Outline

Summary

3 Better Framework

4 Three Results

The real options framework is too simple to capture all of the issues in the paper

- A stochastic, decreasing returns technology
- Idiosyncratic technology shock is a Brownian motion
- > The firm has a one-shot option to invest in capital
- The firm can restructure its debt only at that time
- Nice pde's to solve.

Market leverage and quasi-market leverage diverge*

*But they look highly correlated.

What can this framework address?

Investment cash flow sensitivity?

- No real financial frictions
- No ongoing investment to covary with anything.

What can this framework address?

Investment cash flow sensitivity?

- No real financial frictions
- No ongoing investment to covary with anything.

- Default predictions?
 - Yabbut . . .

What can this framework address?

Investment cash flow sensitivity?

- No real financial frictions
- No ongoing investment to covary with anything.

- Default predictions?
 - Yabbut . . .

- Asset pricing results?
 - No pricing kernel

Outline

Summary

2 Real Options

3 Better Framework

4 Three Results

5 Conclusion

A partial equilibrium model of a representative firm

Discrete time, infinite horizon

Maximizes the expected present value of distributions

Stochastic, decreasing returns technology that uses capital.

Capital investment

Many financing options with frictions

Standard production technology

c_f	Pay fixed operating costs up front
zxk^{lpha}	Stochastic profit function of capital
$\ln z' = \rho \ln z + \varepsilon_z'$	Idiosyncratic shock, AR(1) in logs
$\varepsilon_z \sim N(0, \sigma_z^2)$	Normal innovation
x	Aggregate shock: x_h and x_l
$I = k' - (1 - \delta)k$	Investment

The firm has two different sources of financing

- ▶ profits: $zxk^{\alpha} c_f$
- one-period risky debt (b): repaid when the debt matures
 - negative b indicates cash
 - default occurs when firm value falls below zero
 - price of the debt (p): determined by shocks, and the firm's current-period decisions

No equity issuance

Reduced-form pricing kernel

Expected returns vary with x. The conditional expected return is

 $\beta m(x,x').$

▶ Time-varying expected return is a function of current and future *x*.

$$\ln m(x, x') = m_0 + m_1(x' - x).$$

linvestors value assets that pay off in bad states of the world, so $m_1 < 0$.

The firm maximizes its discounted expected value

The value function is given by

$$V(z, x, k, b) = \max\{0, V^{c}(z, x, k, b)\}$$

If firm value drops below zero, the firm defaults.

► The Bellman equation is:

$$V^{c}(z, x, k, b) = \max_{I, b'} \left\{ d + \beta \mathbb{E}m(x, x')V^{c}(z', x', k', b') \right\}$$

subject to

$$d = zxk^{\alpha} - c_f + pb' - b - I,$$
$$d \ge 0$$

Debt Pricing

- The firm borrows from a competitive and risk neutral lender
- In the event of default, the lender gets to keep a fraction \(\chi\) of the depreciated capital stock.
- The lender provides a state-contingent contract that compensates for the loss in case of default

▶ *p* is the price of debt

$$pb' = \beta \mathbb{E}m(x, x') \left\{ \mathbf{1}_{V' > 0} b' + \mathbf{1}_{V' \le 0} [\chi(1 - \delta)k'] \right\}$$

solvency default

Outline

Summary

2 Real Options

3 Better Framework

5 Conclusion

Result 1

How does this relate to investment cash flow sensitivity?

Consider the usual investment regression:

investment = $(\text{true } q)\beta + (\text{cash flow})\alpha + u$ observed q = $\text{true } q + \varepsilon$

The cash flow coefficient is decreasing in the R² of the measurement equation, aka measurement quality.

How does this relate to the sketched model?

- Estimate measurement quality (Erickson and Whited 2000; Erickson, Jiang, and Whited 2014):
 - In the actual data with the usual q
 - 2 In the actual data with the improved q
 - In simulated data with *q* constructed with book debt, *b*.
 - In simulated data with *q* constructed with market debt, *pb*.
- See whether the discrepancy between market and book debt in the model can explain any observed changes in measurement quality.
- ► Give an **economic** interpretation to a source of measurement error.

Result 2

- In the model, the price of debt falls as the firm nears default
- So of course market leverage will be a better predictor of default
- > The default prediction results should be more of a reality check than a prediction

Result 3

- Can the model with market debt replicate your bond spread results?
- Can the model with market debt replicate your equity sorting results?
- Does using market debt in the model-simulated data matter?

Outline

Summary

2 Real Options

3 Better Framework

4 Three Results

Discussion Marking to Market Corporate Debt

A paper with enormous potential

Great measurement

Interesting empirical results

Needs a better unifying framework to make sense of all of the seemingly disparate results.

Summary Real Options Better Framework Three Results Conclusion

Erickson, T., C. Jiang, and T. M. Whited. 2014. Minimum Distance Estimation of the Errors-in-Variables Model Using Linear Cumulant Equations. *Journal of Econometrics* 183:211–221.

Erickson, T., and T. M. Whited. 2000. Measurement Error and the Relationship Between Investment and q. Journal of Political Economy 108:1027–1057.