Robustness Checks in Structural Analysis Sylvain Catherine, Mehran Ebrahimian, David Sraer, and David Thesmar

discussion by Toni Whited

2023 WFA

Discussion

Robustness Checks in Structural Analysis

Outline

I am going to do three things!

Explain what is going on

Identify an issue and offer a solution

Talk about the importance of the topic

Find an easy way to do robustness checks regarding moment selection in structural estimation.

- Why does this need to be easier?
- Structural estimation is sssslllloooowwww.
- It is hard to do robustness if it takes one week to do an estimation.

Why is structural estimation slow

Estimate some parameters, θ , of an economic model by minimizing

simulated moments $(\boldsymbol{\theta})$ can be very nonlinear

no closed form

$$\left[\begin{array}{c} \mathsf{data} \\ \mathsf{moments} \end{array} - \hspace{0.1cm} \frac{\mathsf{simulated}}{\mathsf{moments}} \hspace{-0.1cm} \left(\boldsymbol{\theta} \right) \right]' \hat{\boldsymbol{W}} \left[\begin{array}{c} \mathsf{data} \\ \mathsf{moments} \end{array} - \hspace{-0.1cm} \frac{\mathsf{simulated}}{\mathsf{moments}} \hspace{-0.1cm} \left(\boldsymbol{\theta} \right) \right]$$

is like trying to walk down:

Walking down the mountain takes time

No closed form

- With each step you have to
 - solve the model
 - simulate data
 - recalculate the bumpy thing to be minimized

It can take 50,000 or more steps.

Estimating once is usually fine. Many times? Not so much.

Illustrate their alternative with a very simple investment model

- A firm maximizes the expected present value of shareholder distributions
- Distributions are profits minus investment
- Profits come from an exogenous shock and a decreasing returns function of capital

$$\max_{\substack{k_{t+j,j=0,\dots,\infty}}} \quad \mathbb{E}_0 \sum_{j=0}^{\infty} \frac{1}{(1+r)^t} \left(z_{t+j} k_{t+j}^{\alpha} - \left(k_{t+j+1} - (1-\delta) k_{t+j} \right) \right)$$
$$\max_{\substack{k_{t+j,j=0,\dots,\infty}}} \quad \mathbb{E}_0 \sum_{j=0}^{\infty} \frac{1}{(1+r)^t} \left(\text{profits} - \text{investment} \right)$$

Discussion

Robustness Checks in Structural Analysis

The solution is "marginal product of capital equals user cost!"

$$E_t \left(\alpha z_{t+1} k_{t+1}^{\alpha - 1} \right) = r + \delta$$

$$E_t (\mathsf{MPK}_{t+1}) = \text{interest rate} + \text{depreciation rate}$$

= user cost

I want to estimate profit function curvature (α)

• Let's say I know δ , r, and the driving process for z_t .

• And I estimate α

But ... I am unsure if I picked the right moments.

I could just reestimate using all possible combinations of available moments

Or I could use their method

 Start by choosing carefully selected, random-ish values for α (Sobol' or Halton sequences)

For each I solve and simulate the model and calculate moments.

So I make the moments for each value of α

Discussion

Robustness Checks in Structural Analysis

And I fit the moment to the parameter

Robustness Checks in Structural Analysis

And I fit the moment to the parameter

Discussion

Robustness Checks in Structural Analysis

14/31

Do the same thing for a bunch of other moments

Before, computing the objective function was a process:

► Now!

$$\begin{bmatrix} \mathsf{data} & - & \mathsf{approximate} \\ \mathsf{moments} & - & \mathsf{moments} \end{bmatrix}' \hat{\boldsymbol{W}} \begin{bmatrix} \mathsf{data} & - & \mathsf{approximate} \\ \mathsf{moments} & - & \mathsf{moments} \end{bmatrix}'$$

has a closed form

easy to try all possible moment vectors

Outline

Especially in corporate finance, these plots are often bumpy

Frictions and nonconvexities are the bread and butter of corporate finance

I am going to add some nonconvexities to the model

Non-negative profit constraint (no equity issuance)

Fixed cost of adjusting the capital stock

Remember how the plot used to be smooth?

Discussion

Robustness Checks in Structural Analysis

It's not anymore with the nonconvexities

Discussion

Robustness Checks in Structural Analysis

19/31

And the fit is not as good

Robustness Checks in Structural Analysis

But is this serious? I answer with Monte Carlos

How often does approximate SMM recover the true value?

► Two Monte Carlos:

- Using the actual bumpy, non-closed-form moment functions
- Using the smooth, closed-form approximate moment functions
- Just with one specific choice of moments
 - Mean investment
 - Variance of investment

```
Monte Carlo Design
```


Simulate 1000 small data sets (n = 500)

• Estimate the curvature (α) parameter using actual and approximate SMM:

The results are not great for approximate SMM

Approximate SMM is screamingly fast.

And very accurate at hitting the wrong spot.

All results are expressed as a fraction of the true value

	Actual SMM	Approx SMM	Approx SMM
		Quadratic	Cubic
Mean Bias	0.009	0.279	0.163
RMSE	0.040	0.294	0.163

The authors should do a bunch of Monte Carlos

Look at models with serious nonconvexities

See how good an approximation you need to make the estimator work.

> You can use a **laptop**.

The authors do look at the accuracy of the approximations

But not directly at the implications for estimation.

► This would improve the paper a great deal.

Outline

Summary

Is moment choice the right dimension of robustness?

▶ Referees never ask me to check robustness with respect to moment choice.

▶ Models should **not** be "robust" to the choice of moments.

They are models, not reality.

The set of moments should be tailored to the economic question

▶ If your question is about **A** . . .

▶ and you can match moments related to A . . .

and you are transparent about the model's inevitable limitations,

that's as good as it can get

A more important dimension of robustness is the model

Most structural robustness sections are about this question.

It's the right question to ask.

Outline

Summary

The method in this paper might end up being quite useful

I want to know how much estimation error it introduces

I want to know if you can reduce this error with better approximations

I do not think the technique will be useful for "robustness."

► The technique might be useful to identify where models break.

• We can **learn** something from where the models break down.